圖7.真實的全息記錄(左上),用于補償彗差并將接收器(能隙)定位在平坦表面上的共軛結(jié)構(gòu)(左下)。
近軸焦點處的參考點光源由透鏡轉(zhuǎn)換成平面波前。相反,物點光源被透鏡轉(zhuǎn)換成有像差的準平面波前。通過在透鏡的平面上記錄具有準平面波前的光柵來校正該效應。
通過在平坦表面上使用期望的點源對象光束,來調(diào)整接收器的位置,如圖7的左下幾何結(jié)構(gòu)所示。
圖8.在左邊,采用真實結(jié)構(gòu)(平面光柵)記錄的光柵重建,分別對應于(a)單色光(633nm的HeNe)和(b)白光(氙弧太陽模擬器)。在右側(cè),采用共軛結(jié)構(gòu)(補償光柵)記錄的光柵重建,分別對應于(c)單色光和(d)白光。
圖8(a)和(c)的比較顯示出彗差的共軛結(jié)構(gòu)補償,將光引向更緊密的焦點。對于單色和白光重建可以看到類似的結(jié)果。
4. 結(jié)論
在本文中,討論了光譜分裂作為用于多結(jié)PV系統(tǒng)的串聯(lián)電池的替代。提出了頻譜轉(zhuǎn)換效率(SCE)、整體系統(tǒng)效率、濾波器加權(quán)重疊(O)和對最佳能隙(IoBB)的改進,并將其定義為光譜分裂系統(tǒng)的評估度量。描述了全息光柵-透鏡幾何結(jié)構(gòu),并已經(jīng)給出模擬和實驗結(jié)果。對于在可見光范圍(<0.9μm)中具有更多能隙的系統(tǒng),IoBB顯示較大值。
光柵-透鏡幾何結(jié)構(gòu)的離軸衍射角導致彗差和顯著的系統(tǒng)損耗。提出并演示了使用共軛記錄幾何來補償這種損耗的方法。
正在進行的工作包括使用系統(tǒng)度量結(jié)合已建立的用于全息光學元件中的最小化像差技術來增加總體光電轉(zhuǎn)換效率。
5. 致謝
作者想要感謝NSF / DOE ERC合作協(xié)議號EEC-1041895、NSF批準號0925085、亞利桑那州TRIF(WEES)項目和研究公司的支持。
參考文獻
[1] T. O. M. Tiedje, E. L. I. Yablonovitch, G. D. G. D. Cody, and B. G. B. G. B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Transactions on Electron Devices 31(5), 711–716 (1984) [doi:10.1109/TED.1984.21594].
[2] A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, et al., “Very high efficiency solar cell modules,” Progress in Photovoltaics: Research and Applications 17(1), 75–83 (2009) [doi:10.1002/pip.852].
[3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Progress in Photovoltaics: Research and Applications 21(5), 827–837 (2013) [doi:10.1002/pip.2404].
[4] E. Hecht, Optics 4th edition, in Optics 4th edition by Eugene Hecht Reading, MA: … (2001).
[5] A. L. Gray, M. Stan, T. Varghese, A. Korostyshevsky, J. Doman, A. Sandoval, J. Hills, C. Griego, M. Turner, et al., “Multi-terminal dual junction InGaP<inf>2</inf>/GaAs solar cells for hybrid system,” in 2008 33rd IEEE Photovolatic Specialists Conference, pp. 1–4, IEEE (2008) [doi:10.1109/PVSC.2008.4922575].
[6] J. D. McCambridge, M. A. Steiner, B. L. Unger, K. A. Emery, E. L. Christensen, M. W. Wanlass, A. L. Gray, L. Takacs, R. Buelow, et al., “Compact spectrum splitting photovoltaic module with high efficiency,” Progress in Photovoltaics: Research and Applications 19(3), 352–360 (2011) [doi:10.1002/pip.1030].
[7] D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” K. VanSant and A. P. Plesniak, Eds., 846807–846807–10 (2012) [doi:10.1117/12.929187].
[8] B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, et al., “Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency,” Progress in Photovoltaics: Research and Applications 19(1), 61–72 (2011) [doi:10.1002/pip.988].
[9] E. D. Aspnes, J. E. Castillo, R. D. Courreges, P. S. Hauser, G. Rosenberg, and J. M. Russo, “Volume Hologram Replicator for Transmission Type Gratings,” U.S. Patent No. Application US 2013/0120815 A1, in WO Patent …, United States (2013).
[10] R. K. Kostuk, J. Castillo, J. M. Russo, and G. Rosenberg, “Spectral-shifting and holographic planar concentrators for use with photovoltaic solar cells,” in Proceedings of SPIE 6649, M. Symko-Davies, J. Guo, B. von Roedern, D. R. Myers, and A. E. Delahoy, Eds., p. 66490I–66490I–8, San Diego, CA (2007) [doi:10.1117/12.736542].
[11] D. Jurbergs, F. Bruder, F. Deuber, T. Fäcke, R. Hagen, T. Rölle, M. Weiser, A. Volkov, B. M. Llc, et al., “New recording materials for the holographic industry,” 1–10 (2009) [doi:10.1117/12.809579].
[12] M. Gordon, D. Zhang, S. Vorndran, J. M. Russo, C. K. Luscombe, S. E. Shaheen, and R. K. Kostuk, “Planar holographic spectrum-splitting PV module design,” High and Low Concentrator Systems for Solar Electric Applications VII 8468(520), K. VanSant and A. P. Plesniak, Eds., 846808–846808–9 (2012) [doi:10.1117/12.929387].
[13] J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Applied Physics Letters 73(14), 1991 (1998) [doi:10.1063/1.122345].
[14] G. J. Bauhuis, J. J. Schermer, P. Mulder, M. M. A. J. Voncken, and P. K. Larsen, “Thin film GaAs solar cells with increased quantum efficiency due to light reflection,” Solar Energy Materials and Solar Cells 83(1), 81–90 (2004) [doi:10.1016/j.solmat.2003.11.030].
[15] K. Winick, “Designing efficient aberration-free holographic lenses in the presence of a construction-reconstruction wavelength shift,” Journal of the Optical Society of America 72(1), 143 (1982) [doi:10.1364/JOSA.72.000143].
文章來源:Grating-Over-Lens Concentrating Photovoltaic Spectrum SplittingSystems with Volume Holographic Optical Elements
|